
소프트웨어공학원리
(SEP521)

Jongmoon Baik

Software M&M - I

2

Software M&M – I
Product Metrics

3

McCall’s Triangle of Quality

M a in ta in a b il ityM a in ta in a b il ity

F le x ib il i tyF le x ib il i ty

T e s ta b ili tyT e s ta b ili ty

P o rta b il ityP o rta b il ity

R e u s a b il ityR e u s a b il ity

In te ro p e ra b il ityIn te ro p e ra b il ity

C o rre c tn e s sC o rre c tn e s s

R e lia b il i tyR e lia b il i ty

E ff ic ie n c yE ff ic ie n c y

In te g r ityIn te g r ity

U s a b il i tyU s a b il i ty

P R O D U C T T R A N S IT IO NP R O D U C T T R A N S IT IO NP R O D U C T R E V IS IO NP R O D U C T R E V IS IO N

P R O D U C T O P E R A T IO NP R O D U C T O P E R A T IO N

4

A Comment

McCall’s quality factors were proposed in the early 1970s.

They are as valid today as they were in that time. It’s likely

that software built to conform to these factors will exhibit

high quality well into the 21st century, even if there are

dramatic changes in technology.

5

Measures, Metrics and Indicators

• A measure provides a quantitative indication of the

extent, amount, dimension, capacity, or size of some

attribute of a product or process

– Measurement is the act of determining measure

• The IEEE glossary defines a metric as “a quantitative

measure of the degree to which a system, component,

or process possesses a given attribute.”

• An indicator is a metric or combination of metrics

that provide insight into the software process, a

software project, or the product itself

6

Measurement Principles

• The objectives of measurement should be established before

data collection begins;

• Each technical metric should be defined in an unambiguous

manner;

• Metrics should be derived based on a theory that is valid for

the domain of application

– (e.g., metrics for design should draw upon basic design concepts and

principles and attempt to provide an indication of the presence of an

attribute that is deemed desirable);

• Metrics should be tailored to best accommodate specific

products and processes [Bas84]

7

Measurement Process

• Formulation. The derivation of software measures and metrics

appropriate for the representation of the software that is being

considered.

• Collection. The mechanism used to accumulate data required to

derive the formulated metrics.

• Analysis. The computation of metrics and the application of

mathematical tools.

• Interpretation. The evaluation of metrics results in an effort to

gain insight into the quality of the representation.

• Feedback. Recommendations derived from the interpretation of

product metrics transmitted to the software team.

8

Goal-Oriented Software Measurement

• The Goal/Question/Metric Paradigm
– (1) establish an explicit measurement goal that is specific to the

process activity or product characteristic that is to be assessed

– (2) define a set of questions that must be answered in order to achieve
the goal, and

– (3) identify well-formulated metrics that help to answer these
questions.

• Goal definition template

– Analyze {the name of activity or attribute to be measured}

– for the purpose of {the overall objective of the analysis}

– with respect to {the aspect of the activity or attribute that is
considered}

– from the viewpoint of {the people who have an interest in the
measurement}

– in the context of {the environment in which the measurement takes
place}.

9

What is GQM?

“A systematic approach for integrating goals to
models of the software processes, products and
quality perspectives of interest based upon the
specific needs of the project and the organization”

[Basili 1984]

10

Three Steps of GQM

Goal: The major goals of the
development project

Questions: Questions derived from
goals that must be answered in order

to determine if the goals are
achieved

Metrics: Measurements that provide
the most appropriate information for

answering the questions

11

Source: N. Fenton & S. Pfleeger, Software Metrics: A Rigorous & Practical Approach (2nd Ed), PWS
Publishing Company, 1997

GQM Example

12

• Two major streams of improvement models, methods,
and techniques
– Top-down approaches

• Which are based on assessment and benchmarking

• Example: CMM, SPICE, BOOTSTRAP, etc.

– Bottom-up approaches
• Which mainly apply measurement as their basic guide for

improvement

• Example: GQM

• Very useful to combine two approaches
– For example, GQM with CMM

– GQM gives the answer why we measure an attribute

– CMM tells us if we are capable of measuring it in a
meaningful way

GQM & Software Process Improvement

13

GQM Measurement Phases

• Planning
– The project for measurement

application is selected,
defined, characterized, and
planned, resulting a project
plan

• Definition
– The measurement program is

defined (goal, questions,
metrics and hypotheses are
defined) and documented

• Data Collection
– The actual data collection

takes place, resulting in
collected data

• Interpretation
– The collected data is

processed with respect to the
defined metrics into
measurement results, that
provide answers, to the
defined questions, after which
goal attainment can be
evaluated

14

Attributes of Effective SW Metrics

• Simple and computable. It should be relatively easy to learn how to
derive the metric, and its computation should not demand inordinate
effort or time

• Empirically and intuitively persuasive. The metric should satisfy the
engineer’s intuitive notions about the product attribute under
consideration

• Consistent and objective. The metric should always yield results that are
unambiguous.

• Consistent in its use of units and dimensions. The mathematical
computation of the metric should use measures that do not lead to bizarre
combinations of unit.

• Programming language independent. Metrics should be based on the
analysis model, the design model, or the structure of the program itself.

• Effective mechanism for quality feedback. That is, the metric should
provide a software engineer with information that can lead to a higher
quality end product

15

Collection and Analysis Principles

• Whenever possible, data collection and

analysis should be automated;

• Valid statistical techniques should be applied

to establish relationship between internal

product attributes and external quality

characteristics

• Interpretative guidelines and recommendations

should be established for each metric

16

Metrics for the Requirements Model

• Function-based metrics: use the function point

as a normalizing factor or as a measure of the

“size” of the specification

• Specification metrics: used as an indication of

quality by measuring number of requirements

by type

17

Function-Based Metrics

• The function point metric (FP), first proposed by Albrecht

[ALB79], can be used effectively as a means for measuring

the functionality delivered by a system.

• Function points are derived using an empirical relationship

based on countable (direct) measures of software's information

domain and assessments of software complexity

• Information domain values are defined in the following

manner:

– number of external inputs (EIs)

– number of external outputs (EOs)

– number of external inquiries (EQs)

– number of internal logical files (ILFs)

– Number of external interface files (EIFs)

18

Function Points

Information

Domain Value Count simple average complex

Weighting factor

External Inputs (EIs)

External Outputs (EOs)

External Inquiries (EQs)

Internal Logical Files (ILFs)

External Interface Files (EIFs)

3 4 6

4 5 7

3 4 6

7 10 15

5 7 10

=

=

=

=

=

Count total

3

3

3

3

3

19

Architectural Design Metrics

• Architectural design metrics

– Structural complexity = g(fan-out)

– Data complexity = f(input & output variables, fan-out)

– System complexity = h(structural & data complexity)

• HK metric: architectural complexity as a function of

fan-in and fan-out

• Morphology metrics: a function of the number of

modules and the number of interfaces between

modules

20

Metrics for OO Design-I

• Whitmire [Whi97] describes nine distinct and measurable
characteristics of an OO design:

– Size

• Size is defined in terms of four views: population, volume, length, and
functionality

– Complexity

• How classes of an OO design are interrelated to one another

– Coupling

• The physical connections between elements of the OO design

– Sufficiency

• “the degree to which an abstraction possesses the features required of it, or
the degree to which a design component possesses features in its
abstraction, from the point of view of the current application.”

– Completeness

• An indirect implication about the degree to which the abstraction or design
component can be reused

21

Metrics for OO Design-II

– Cohesion

• The degree to which all operations working together to

achieve a single, well-defined purpose

– Primitiveness

• Applied to both operations and classes, the degree to

which an operation is atomic

– Similarity

• The degree to which two or more classes are similar in

terms of their structure, function, behavior, or purpose

– Volatility

• Measures the likelihood that a change will occur

22

Distinguishing Characteristics

• Localization—the way in which information is concentrated in a

program

• Encapsulation—the packaging of data and processing

• Information hiding—the way in which information about operational

details is hidden by a secure interface

• Inheritance—the manner in which the responsibilities of one class are

propagated to another

• Abstraction—the mechanism that allows a design to focus on

essential details

Berard [Ber95] argues that the following characteristics
require that special OO metrics be developed:

23

Class-Oriented Metrics

• weighted methods per class

• depth of the inheritance tree

• number of children

• coupling between object classes

• response for a class

• lack of cohesion in methods

Proposed by Chidamber and Kemerer [Chi94]:

24

Class-Oriented Metrics

• class size

• number of operations overridden by a

subclass

• number of operations added by a

subclass

• specialization index

Proposed by Lorenz and Kidd [Lor94]:

25

Class-Oriented Metrics

• Method inheritance factor

• Coupling factor

• Polymorphism factor

The MOOD Metrics Suite [Har98b]:

26

Operation-Oriented Metrics

• average operation size

• operation complexity

• average number of parameters

per operation

Proposed by Lorenz and Kidd [Lor94]:

27

Component-Level Design Metrics

• Cohesion metrics: a function of data objects

and the locus of their definition

• Coupling metrics: a function of input and

output parameters, global variables, and

modules called

• Complexity metrics: hundreds have been

proposed (e.g., cyclomatic complexity)

28

Interface Design Metrics

• Layout appropriateness: a function of

layout entities, the geographic position and

the “cost” of making transitions among

entities

29

Design Metrics for WebApps

• Does the user interface promote usability?

• Are the aesthetics of the WebApp appropriate for the
application domain and pleasing to the user?

• Is the content designed in a manner that imparts the
most information with the least effort?

• Is navigation efficient and straightforward?

• Has the WebApp architecture been designed to
accommodate the special goals and objectives of
WebApp users, the structure of content and functionality,
and the flow of navigation required to use the system
effectively?

• Are components designed in a manner that reduces
procedural complexity and enhances the correctness,
reliability and performance?

30

Code Metrics

• Halstead’s Software Science: a

comprehensive collection of metrics all

predicated on the number (count and

occurrence) of operators and operands within a

component or program

– It should be noted that Halstead’s “laws” have

generated substantial controversy, and many

believe that the underlying theory has flaws.

However, experimental verification for selected

programming languages has been performed (e.g.

[FEL89]).

31

Metrics for Testing

• Testing effort can also be estimated using metrics
derived from Halstead measures

• Binder [Bin94] suggests a broad array of design
metrics that have a direct influence on the
“testability” of an OO system.
– Lack of cohesion in methods (LCOM).

– Percent public and protected (PAP).

– Public access to data members (PAD).

– Number of root classes (NOR).

– Fan-in (FIN).

– Number of children (NOC) and depth of the inheritance
tree (DIT).

32

Maintenance Metrics

• IEEE Std. 982.1-1988 [IEE94] suggests a software
maturity index (SMI) that provides an indication of the
stability of a software product (based on changes that
occur for each release of the product). The following
information is determined:

• MT = the number of modules in the current release

• Fc = the number of modules in the current release that have been
changed

• Fa = the number of modules in the current release that have been
added

• Fd = the number of modules from the preceding release that were
deleted in the current release

• The software maturity index is computed in the following
manner:

• SMI = [MT - (Fa + Fc + Fd)]/MT

• As SMI approaches 1.0, the product begins to stabilize.

33

Q & A

